Hydrogen Tank Design for the Material Handling Industry

Design Group #8 Matthew Grenier, ME Jeffrey Chen, ME Wui On Wong, ME Anil Kumar Chebrolu, ME

Faculty Advisor: Dr. James Pitarresi Industry Sponsor: Raymond Corporation Industry Advisor: Bryce Gregory

The Material Handling Industry

Refers to the movement and storage of products during every phase of life • Manufacturing

- Distribution
- Consumption
- Disposal

Raymond Corporation

- Market leader in the US for electric fork lift trucks
- Owned by Toyota Material Handling Group
- Headquartered in Greene, NY
- Sells, rents, and leases lift trucks throughout the world
- Conducted 2 year study on fuel cell-powered lift trucks

Problem Statement

- Replacing lead-acid batteries
 with fuel cell systems
 - Ideal application for hydrogen
- Eventually the fuel cell system will be designed into the truck
- Raymond requires three design proposals for a compressed hydrogen tank

Project Scope

- · Outside the scope
 - Everything except the hydrogen tank itself
 - The mounting design
 - Which specific lift trucks are using the tanks
 - Construction or testing of a physical prototype
- Two phase project
 - Fall semester research phase
 - Spring semester design phase

Design Requirements

- Store approximately 1kg (43 liters) of hydrogen at 5,000 psi (at 0 ℃)
- Operate from -28 ℃ to 45 ℃
- Be composed of steel to compensate for the lost weight of the lead-acid battery
- Survive 15,000 refueling cycles
- If mounted high above CG, must weigh less than approximately 500 pounds
- HGV5 and DOT Part 178 standards

2

Finite	Eler	ment	Ana	vsis
				J

	316L SS	4130 Q&T
Theoretical Stress [psi]	32900	61580
FEA Stress [psi]	33600	63390
Stress Limits [psi]	34000	67000
Design Efficiency	99%	94%

Ready for Quoting

Hanufacturing Quote • 316L Stainless Steel - 1,000-2,000 = \$777 Each (73% Material) - 10,000 = \$727 Each (6% Discount) • 4130 Q&T Steel - 1,000-2,000 = \$226 Each (75% Material) - 10,000 = \$198 Each (12% Discount)

Dimensional Variations

Case 1 Dimensional
Variation FEA

	316L SS	4130 Q&T
FEA Stress [psi]	35990	69440
Stress Limits [psi]	34000	67000
Design Efficiency	106%	103%

- 316L Stainless Steel
 Yield cannot be lower than 36,000 psi
- 4130 Q&T Steel

+ Not a problem, still meets DOT requirements

Mast-Mounted Nested High Pressure Tubing Coils

Tubing Selection For one loop, the length the coil is given by: where $L_1 = 2(100 - 2D - 2r_b) + 2\pi r_c$ $r_b = bend radius$ $L_1 = 200 - 4D - 4r_b + 2\pi r_c$ $r_c = center radius = (r_b + D/2)$ Tube OD Tube Wall Thickness, in. Swagelok 0.028 0.035 0.049 0.065 0.083 0.095 0.109 0.120 in. Working 1/16 1/8 8500 10 900 Pressure 3/16 5400 7 000 10 200 Table 1/4 4000 5 100 7 500 10 2001 5/16 4 000 5 800 8 000 316L SS 3/8 4 800 6 500 750002 3 300 Seamless 2 600 3 700 5 100 6700 1/2 Tubing 5/8 2 900 4 000 5200 6000 3/4 2 400 3 300 4200 4900 5800 7/8 2 000 2 800 3600 4200 4800 1 2 400 3100 3600 4200 **4700**

Theoretical Stress Calculations

Using same wall stress equations from the cylindrical vessel design

Outside Diameter [in]	1	0.875	0.625	0.5
Wall Thickness [in]	0.120	0.109	0.095	0.083
Swagelok Working Pressure [psi]	4700	4800	6000	6700
Test Pressure [psi]	8333	8333	8333	8333
Von Mises Stress [psi]	34169	32987	27866	26063
316L Yield Strength [psi]	36000	36000	36000	36000
Design Efficiency	95%	92%	78%	72%

Theoretical vs FEA

	Outside Diameter [in]	1	0.875	0.625	0.5	
	Von Mises Stress by Hand [psi]	34169	32987	27866	26063	
	Von Mises Stress from FEA (Straight Section) [psi]	34314	33213	28084	26317	
	Von Mises Stress from FEA (Bent Section) [psi]	36068	34950	29514	27583	
	Stress Ratio Between Straight and Bent Sections	1.05	1.05	1.05	1.05	
	316L Yield Strength [psi]	36000	36000	36000	36000	
	Design Efficiency (Straight)	95%	93%	77%	71%	
	Design Efficiency (Bend)	100%	97%	83%	77%	
Cond	clusion: The HGV5 7,500 should be used instead) psi h d of the	ydrosta DOT	atic tes 8,333	st pres: psi	sure
					·	

Dimensional Variations

-10% Wall variation, +0.005" OD Variation

Outside Diameter [in]	1.005	0.880	0.630	0.505
Wall Thickness [in]	0.108	0.098	0.086	0.075
Test pressure [psi]	7500	7500	7500	7500
Estimated Von Mises Stress (Bent Section) [psi]	38317	37179	32219	30667
Yield Strength [psi]	36000	36000	36000	36000
Design Efficiency (Bend)	106%	103%	89%	85%

Dimensional Variations

Allowing only 5% variation in the wall

Outside Diameter [in]	1.005	0.880
Wall Thickness [in]	0.114	0.098
Test pressure [psi]	7500	7500
Estimated Von Mises Stress (Bent Section) [psi]	35411	34347
Yield Strength [psi]	36000	36000
Design Efficiency (Bend)	98%	95%

Cross-Section Revision

Full Assembly Design Weight ~719 lbs Part Name Dwg N 1 Long member with valve of Longside member 6 Shortside member 5 Middle member 4 5 Cross member 3 6

Volume ~41.3 L

Valve member 8 7 Cross member with valve ope

9

Junction FEA Results

6 250 nei		
0,230 psi	Maximum Stress [psi]	Design Efficiency
Single Member	67370	66%
L-Junction	82497	81%
T-Junction	67260	66%
X-Junction	71840	77%
Valve T-Junction	66240	65%
		00/0
7 500 moi		0070
7,500 psi	Maximum Stress [psi]	Design Efficiency
7,500 psi Single Member	Maximum Stress [psi] 80850	Design Efficiency 79%
7,500 psi Single Member L-Junction	Maximum Stress [psi] 80850 98990	Design Efficiency 79% 97%
7,500 psi Single Member L-Junction T-Junction	Maximum Stress [psi] 80850 98990 79370	Design Efficiency 79% 97% 78%

Recommendations

- Practicality of design proposals
 - Cylindrical vessels
 - Nested high pressure tubing
 - Rectangular tank
- Future work
 - Address welding and cycling
 - More expansive, up-to-date standards review
 - Construct prototypes and conduct testing

Accomplishments

- ✓ Reviewed applicable design standards
- ✓ Generated, evaluated, and selected three design concepts
- ✓ Created detailed design proposals
- ✓ Documented design iterations and results
- ✓ Generated functional specifications
- ✓ Consulted with industry experts
- \checkmark Acquired a quote for one design

Acknowledgements

- Bryce Gregory, Industry Advisor
- Dr. James Pitarresi, Faculty Advisor
- Industry contacts
 - Jim Wedding, Taylor-Wharton
 - Wendy Caparco and Dino Dutcher, Swagelok
 - Michael Bauman, Handy & Harman Tube Co.
 - Joe Renick, Louisiana Steel
 - Bill Nashak, Eric Trimble, Tom Crowe, Paul Nugent, Jeff Hoerr, Aaron Harris, Norm Newhouse, Sally Mitchell, John Moncrief